Exponentially Convergent Numerical-Analytical Method for Solving Eigenvalue Problems for Singular Differential Operators
نویسندگان
چکیده
The paper summarizes the authors’ recent work on developing and proving an exponentially convergent numerical-analytical method (the FD-method) for solving Sturm-Liouville problems with a singular Legendre operator and a singular potential. It gives a concise general overview of the FD-method, outlines the proof of its convergence and exponential convergence rate when applied to the particular problem at hand and talks briefly about its software implementation.
منابع مشابه
An efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملApplications of Adaptive Multi Step Differential Transform Method to Singular Perturbation Problems Arising in Science and Engineering
In this paper, piecewise-analytical and numerical solutions of singular perturbation initial-value problems are obtained by an adaptive multi-step differential transform method (MsDTM). The principle of the method is introduced, and then applied to different types of practical problems arising in science and engineering. Analytical and numerical solutions are obtained using piecewise convergent...
متن کاملNumerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کاملWavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel
This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel. First, a collocation method based on Haar wavelets (HW), Legendre wavelet (LW), Chebyshev wavelets (CHW), second kind Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW) and BPFs are presented f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013